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A B S T R A C T  

By studying partially monotone operators,  we are able to show among other 
results that convex-concave and biconvex mappings defined on Asplund spaces 
or dually strictly convex spaces are respectively generically Fr6chet or Gateaux 
ditierentiable. 

Introduction 

Recently Jouak and Thibault [9], [10] have undertaken a study of the 

continuity and differentiability of convex-concave and biconvex operators 

taking values in appropriate partially ordered vector spaces. This study was 
based on Rockafellar's work on saddle functions [18] and the present author's 
work on convex operators [3], [4]. In [10] Jouak and Thibault showed that 

continuous convex-concave operators defined on separable Fr6chet spaces are 

Gateaux differentiable almost everywhere (in the sense of Christensen [5]). For 

convex operators a very satisfactory theory exists [3], based on the Baire 

category theorems of Mazur [14], Asplund [1] and others as described in [3]. This 

suggests that analogous results might exist for saddle functions and operators. 

This is indeed so as we now proceed to show. The results, which are modeled on 

adaptations of Kenderov's beautiful theorems [11], [12] on generic single- 

valuedness of monotone operators, appear new even in the scalar case. 
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Partial monotonicity 

Throughout this paper all spaces are real Banach spaces unless otherwise 

specified. Let U be a Banach space with norm dual V. A relation T : U--~ V will 

be called a partially monotone operator if U can be represented as a finite 

product U : =  FI~ Ui and if the restriction of T to each coordinate space is 

monotone (increasing or decreasing). Explicitly, for each x and y in U with x' in 

T(x) and y' in T(y)  we have 

(1.1) ( y ' -  x', y - x)_>-O (-<0) 

whenever y - x lies in U~. Let us consider x = (x, £~) in the standard way with x~ 

in U~ and i~ in U{ (the orthogonal complement). Also, let Z represent the 

projection of T on V, : =  U~. Then it is easy to see that (1.1) is equivalent to 

saying that, for each i in I, Z ( . ,  ~ )  is monotone between U~ and V~, The central 

case in which I is singleton yields the classical monotone operators of Minty [15] 

and others. The other important example is produced by considering the partial 

subgradients of partially convex functions. Specifically, we call an extended real 

valued function on U partially convex (up or down) if U may be factored as 

above and if, for each i in I, f ( . ,  £~) is always convex or always concave. When I 

has cardinality two we will call f biconvex (up or down). Thus our biconvex 

functions may be convex-concave or convex-convex. We associate a partially 

monotone operator with f as follows. Assuming f is convex in the ith 

coordinate, we define the ith partial subgradient of f at x by 

(1.2) O,f(x): = {x',E V, : (x',, y , -x , )<- f (y , ,~ , , ) - f (x , i¢ , )  Vy E U}. 

If f is concave in the ith coordinate we similarly define a partial supergradient 
and use the same notation. We now set 

(1.3) T(f)(x): = 11 O,f(x) 
i E I  

and observe that T(f) is partially monotone. We might well think of T(f) as a 

generalized gradient for f. We do not so denote it to avoid notational conflicts 

with other concepts such as Rockafellar's [18]. We call T(f) the partial 
subgradient of f. 

The domain of T, D(T), is the set of points at which T has nonempty images. 

Also, T is said to be USC (upper-semicontinuous) with respect to the norm 

topology on U and a given topology on V if for each x in the interior of the 

domain of T and each neighbourhood N of T(x) one can find a neighbourhood 

0 of x with T(O) contained in N. We will call an operator T, weakly regular if 
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(locally) it lies inside a norm to weak-star USC partially monotone operator 

T,,(T,(x)CT2(x)). If, in addition, T is locally norm bounded we will call T 

regular. The justification for this is: 

LEMMA 1.1. (a) Every monotone operator is regular and partially monotone. 
(b) The partial subgradient set of a locally Lipschitz partially convex function is 

regular and partially monotone. 
(c) The partial subgradient set of a locally (separately) continuous biconvex 

function is regular and partially monotone. 

PROOF. (a) Every monotone operator T lies inside a maximal monotone 

operator M which is locally norm bounded throughout the interior of D(M) 
[19]. Moreover, M has a (norm to weak-star) closed graph and has weak-star 

compact images. From these facts it follows that M is (norm to weak-star) USC 

and, hence, T is regular. 
(b) Since f is continuous, T(f) is norm to weak-star closed. Moreover, since f 

is locally Lipschitz, T(f) is locally bounded. As in (a), T(f) is USC. 
(c) It is a consequence of the Baire category theorem that a separately 

continuous biconvex function is jointly continuous, and then is actually locally 

Lipschitz throughout the interior of its domain of finiteness. (The details can be 

found in [9].) The result now follows from (b). [] 

We will also have need for: 

LEMMA 1.2. Any weakly regular partially monotone operator lies inside a 
(norm to weak-star) USC partially monotone operator with weak-star closed 
convex images. 

PROOF. For T partially monotone and USC we define C:  U ~  V by 

(1.4) C(x):  = cl-conv T(x) 

with closure taken in the weak-star topology. A little reflection on (1.1) shows 

that C is still partially monotone. Next, observe that C has weak-star compact 

images throughout int D(C). Indeed, each T~(., £i) is locally bounded; thus T 

has bounded images inside int D(T). A standard compactness argument shows 

that it suffices to verify that for each weak-star neighbourhood N of zero one can 

find a neighbourhood 0 of x with C(0) contained in C(x)+ N. Since N may be 
supposed convex and since T(0)can be assumed to lie in T(x)+ N we are done. 

[] 

We can now establish our main results. Firstly: 
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THEOREM 1.3. Suppose that U admits a strictly convex dual norm on V. Then 
every weakly regular partially monotone operator is single-valued at the points o[ a 
dense G, subset o[ the interior of its domain. 

PROOF. We may assume, by Lemma 1.2, that T is USC with compact convex 

images. We may also assume that T is actually partially isotone (monotone 

increasing) in each coordinate. For x in int D(T) we define mi (for each i) by 

(1.5) m,(x) : = rain {ll y, I]: y E T(x)}. 

Since the norm is weak-star lower-semicontinuous and T is USC, m, is 

lower-semicontinuous; and the infimum is attained. Since int D(T) is a Baire 

space, m~ is actually continuous on a dense G~ subset G(i) of int D(T). We will 

show, as in [11], that G(i) is comprised of points at which T~ is singleton. It 

follows that G : = [")~c~G(i) is a suitable G~ set. Since we may assume the norm 

to be strictly convex we must only show that m , (x )<  ]1 y, [[ is impossible for y in 

T(x) and x in G(i). Select a unit vector x, in U~ with m~(x)<(y,,x~). By 

continuity of m, we will have m~(x+txi)<(y,,x~) for t small and positive. 

Choose y(t)  lying in T(x + tx~) with (y,(t),x~)<(y,x,). This contradicts the 

partial isotonicity of T. [] 

EXAMPLE. In the saddle function case we know there is a linear 1 - 1  

surjective mapping L : X ~  X such that L*T is monotone; L(x, y ) : =  (x, - y )  

in fact [18]. In general this will not happen for partially convex functions (up or 

down). Indeed let T(x,y)=(x2y, yx 2) for f(x,y):=½(xyy. If L*T is ( + )  

monotone we have 

( ( T 0 , 1 ) - T ( 1 - x , O ) ) , L ( 1 ) ) > O  

for x E R. Then this says that if L(x, y ) : =  (ax + by, cx + dy) we have 

(a+c)x+(b+d)>=O for all x. 

This is only possible if a = - c, symmetrically b = - d and L is not 1 - 1. Note 

that for single-valued results only injective L* are any use if we wish to deduce 

that T(x) is singleton when L * T(x) is. [] 

Our second result is the analogue result for norm to norm semicontinuity. 

Recall that a Banach space U is an Asplund space if every convex function on U 

is Fr6chet differentiable on a dense G~ subset of its points of continuity [16]. 

Such a set is said to be generic. 
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THEOREM 1.5. (a) Every partially monotone operator T defined on a Banach 
space is single-valued and norm to norm USC exactly at the points o]: a G~ subset, 
G, of int O(T). 

(b) If the Banach space is an Asplund space and T is regular then G is dense in 
int O (T). 

PROOF. (a) For each i in I and n in N x, consider 

(1.6) G(i,n):  ={x EintD(T):diam(T~(x +(1/m)B))< 1/n for some m in NX}. 

Then G ' =  O~E~,,~N,G(i, n) exhibits the points at which T is singleton and 
norm to norm USC as a G~ set. (Here B is the unit ball in U.) 

(b) Since T is regular we may assume that T is actually USC norm to 

weak-star and locally bounded. Again, following Kenderov [12], we argue as 

follows. Fix x in int D(T). Let 0 be an open neighbourhood of x, small enough so 
that T~(0) is bounded. Since U is Asplund, A : =  clconv T~(0) contains a 

weak-star strongly exposed point and one can find a point xi in Ui which 

weak-star dents T~(0) [7], [16]. Let n in N be given and select r > 0 such that the 

nonempty set 

(1.7) S(r)" ={y, ~ T~(0): sup{(y, x,)I y, E T~(0)}- r < (y~, x,)} 

has diameter less than 1/n. Let z in 0 and w in T(z) be chosen with w~ in S(r). 
Set x( t ) :  = z + tx,, with t positive and small enough so that x(t) is in 0. For each 
w(t) in T(x(t)) we have, by partial monotonicity, 

(1.8) (w,( t ) ,x , )=(w, ,x , )+(1/ t ) (w( t ) -w,x( t ) -z )>=(w, ,x , )  

so that T~(x(t)) lies in S(r). Since T is USC norm to weak-star, there is a 

neighbourhood of x(t), W, lying in 0 with T~(W) in S(r). Thus diam T~(W) is less 

than 1/n and x(t) lies in G(i, n). Thus each G(i, n) is dense and the proof is 
complete. [] 

REMAaK 1.6. (a) An examination of the proof shows that we actually only 

need each coordinate space to be Asplund. This is equivalent [15]; our argument 

gives another proof of this. 

(b) We have no example of a weakly regular partially monotone mapping 

which is not regular. 

(c) It is possible to simplify the proof if one only wishes to deal directly with 
the partially convex case. 

(d) Part (b) of Theorem 1.5 can also be deduced as a consequence of an 

elegant recent result of Christensen and Kenderov [6]. 
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Applications to differentiability 

An immediate application of the previous results is that the set of points at 

which all the partial derivatives of a locally Lipschitz partially convex function 

exist can be shown to be generic. We can do better in the case of biconvex 

functions and operators. 

We now consider mappings taking values in a real locally convex space Y 

endowed with a partial order induced by a closed convex cone S. (See [3], [4], [9] 

for details.) We avoid infinity by considering mappings defined on an open 

convex subset C of U. Since all our results are local this is no restriction. A 

mapping f : C ~  Y is said to be convex (with respect to S) if for each x and y in C 

a n d 0 < t < l  we have 

(2.1) tf(x) + (1 - t ) f ( y ) -  f(tx + (1 - t )y)  E S. 

We may then define partially convex and biconvex operators with respect to S, 
exactly as in Section 1. We presume throughout that the cone S is normal: there 

is a base at zero for the topology on Y such that ( S -  W)f3 ( W - S ) C  W for 

each W in the base; such neighbourhoods are said to be full. 

PROPOSITION 2.1. Let f :  C---~ Y be (separately) continuous and biconvex (up 
or down). 

(a) If f is partially Gateaux differentiable at x then f is Gateaux differentiable at 
X. 

(b) Similarly, if Y is normed and f is partially Frdchet differentiable at x then f is 
Frdchet differentiable at x. 

PROOF. (a) This is a consequence of Propositions 3.1 and 3.2 of [10]. 

(b) We establish only the convex-concave case. The convex-convex case 

follows with an adjustment as in [10, Proposition 3.2]. Let D,f(x)  and D2f(x) 
represent the two partial derivatives (singleton sub- and super-gradient sets). By 

an extension of Corollaries 2.9 and 3.6 of of [9] we can show that f is Lipschitz in 

a neighbourhood of x. Let W be an arbitrary full open neighbourhood of zero. 

Fix e > 0  so that for all unit vectors h in U and 0 <  t < e we have 

(2.2) (1/t)[f(x + th,) - f(x)]  - D,f(x)h,  E W, 

and 

(2.3) (1/t)[f(x + th2)- f (x)]  - D,f(x)h2 ~ W. 

We also take e small enough so that f is Lipschitz on a ball of radius e around x. 
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Now select 0 <  6 < e such that for 0 <  s < a and all unit vectors h we have 

(1/e)If(x, + eh,, x2 + sh2) - f(x, ,  x,_ + sh~_)] - D, f (x)h,  E W, (2.4) 

and 

(2.5) (1/e)[f(x~ + sh,, x2 + eh2)-  f(x~ + sh,, x2)]- D~f(x)h2 (7_ W. 

Now (2.4) is possible as the functions 

g(h," ): = ( l /e)[ / (x ,  + eh,," ) -  f(x,," )] 

are equi-Lipschitz at x2; (2.5) is similar. Now by the convexity-concavity of f, we 

have 

(2.6) ( I / s ) [ f ( x , + s h , , x , + s h O - f ( x , , x , + s h 2 ) ] - D , f ( x ) h , E  W - S  

and 

(2.7) ( l / s ) [ f ( x l + s h l , x 2 + s h 2 ) - f ( x l + s h l ,  x~)]-D2f(x)h2U- W + S  

for 0 < s < 6. If we now add (2.2) with t = s to (2.7) and similarly add (2.3) to 

(2.6) we deduce that for 0 < s < 6 and all unit vectors h 

(1/s )[/(x + sh ) - f (x  )] - [D, f (x  )h + D2f(x )h ] E ( W - S) (3 ( W + S) 

which, since W is full, completes (b) and shows that 

(2.8) Df(x  )h = D, f (x  )h, + D2f(x )h> [] 

By applying this to scalar functions we derive: 

COROLLARY 2.2. (a) If  U is an Asplund space then every biconvex (up or 

down) function is generically Frdchet differentiable (on its domain of continuity). 
(b) I f  U admits a strictly convex dual norm every such function is generically 

Gateaux differentiable. 

PROOF. (a) Theorem 1.5 shows that T(f)  is generically singleton and norm to 

norm USC. It follows that [ is partially Fr6chet at these points [3], and 

Proposition 2.1 now applies. 

(b) follows similarly from Theorem 1.3. [] 

Thus the generic Fr6chet differentiability of saddle-functions actually charac- 

terizes Asplund spaces. Asplund spaces include those with equivalent Fr6chet 

norms and, hence, all reflexive spaces [15]. All weakly compactly generated 

spaces admit strictly convex dual norms [7]. [13]. 
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Finally we give the analogue results for operators. We first recall some 

terminology. A cone S is said to be countably Daniell [3], [1] if every decreasing 
sequence in S has an infimum which is also the topological limit. A continuous 

linear function & on Y is strictly positive if 4~(s)> 0 for all nonzero s in S. When 

Y is metrizable, a cone with a bounded complete base is normal, countably 

Daniell and admits a strictly positive function [3]. We now combine results, 

much as in [9]. 

THEOREM 2.3. Let f : C--~ Y be continuous and biconvex. 
(a) If U is an Asplund space, Y is normed and S has a bounded complete base 

then f is generically Frdchet differentiable. 
(b) If  U admits a strictly convex dual norm and S is normal, countably Daniell 

and admits a strictly positive functional then f is generically Gateaux differentiable. 

PROOF. (a) Let ~b be strictly positive. Then Corollary 2.2(a) shows ~bf to be 

generically Fr6chet differentiable. A fortiori, qbf(., x2) and qbf(x,,. ) are Fr6chet 
differentiable and are convex or concave. Since S has a bounded base, Theorem 
5.2 of [3] shows f to be partially Fr6chet ditierentiable. Now Proposition 2.1(b) 
completes the proof. 

(b) This follows similarly, using Proposition 4.2 of [3] and Proposition 2.1(a). 
[] 

REMARK 2.4. (a) If either U or Y is a separable normed space we may arop 

the hypothesis in Theorem 2.3(b) that strictly positive functionals exist, by 

arguing as in [4, Theorem 3.1]. Part (b) also holds if U is assumed to be an 
Asplund space. 

(b) If we combine the previous result with [10, Proposition 4.6] we may 

deduce that when U is separable the generic set is actually Haar-full  measure. 

(c) As in [10] the conclusion of Theorem 2.3(b) can be strengthened to show 
that f is Michel-Bastiani differentiable. 

(d) The limiting convex examples given in [3] show that the hypotheses on U 

and Y cannot be substantially weakened, unless more restrictions are imposed 
on /. 
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